Task description

Pupils determine the optimum time to visit Hilbre Island, taking account of given considerations.

Suitability \quad National Curriculum levels 4 to 7
Time $\quad 30$ minutes to 1 hour
Resources Paper and calculator

Key Processes involved

- Representing: Understand the problem and consider the constraints given.
- Analysing: Work logically taking account of the constraints.
- Communicating and reflecting: Communicate their findings throughout and summarise their outcomes.

Teacher guidance

To help pupils understand the task, you might choose to introduce it with a short video http://www.bbc.co.uk/wales/nature/mediaexplorer/?theme group=places to go\&theme=no rth east\&set=hilbre island , with comments:

- Hilbre Island is a small island in the Dee estuary, near Liverpool. It is very important for the birds that migrate and nest there. People can only reach it by foot for a few hours a day, when the tide is out, so they must plan carefully when to walk across.
- You are given all the information you need to decide when to start your journey to Hilbre with friends; plan it to have as much time as possible to enjoy the island, but also make sure you can get back safely and do not get stuck there overnight!

The task requires calculations involving time.
During the task, the following probing questions may be helpful:

- What do you need to consider in making your choice? What are the key points?
- Are any of the three dates not possible? Why?
- Why have you chosen this date rather than one of the other dates?
- Will Jon and Lu understand your reasoning?

Further notes for teachers in the Annex.

Hilbre Island

You can walk to Hilbre Island only if the tide is out. At high tide the footpath is under water.
You are planning to walk to the island with your friends. Here is an email from them and information you need to plan your visit.

We can visit on the 15th, 22nd or 29th June.
The earliest we can start walking is about 9am, but we must be back by $5: 30 \mathrm{pm}$. Let's spend as long as possible on the island!
Jon and Lu x

Allow one hour
to walk to the
island, and
one hour to
walk back

WARNING!
Do not walk between 3 hours before and 3 hours after high tide

$\frac{\text { Times of high }}{\underline{\text { tide }}}$
$15^{\text {th }}$ June: $14: 00$
$22^{\text {nd }}$ June: 09:04
$29^{\text {th }}$ June: $12: 57$

Reply to your friends, telling them which date is best for your visit and explaining why some dates are better than others.

You can use this chart to plan your answer.

15th

22nd

29th

Progression in Key Processes

Sample responses

Pupil A

Comments

Pupil A's timeline shows understanding of constraints. On the first line ($15^{\text {th }}$), high tide is shown at 2 pm ; the marks at 10am and 11am show the departure and arrival time on the island. Little information given for the $22^{\text {nd }}$. The $29^{\text {th }}$ shows a start time of just before 9 am and the times when walking is not possible; but she seems to think that walking back must start 3 hours after high tide, hence return of 4 pm to 5 pm . Limited explanation, but the email summary gives an explanation for her answer.

Probing questions and feedback

- Think about communication: how could you have used the timeline more effectively, for example, so that Jon and Lu could understand your thinking?

Pupil A would benefit from examples of how to present her work better, for example, by getting another 'e-mail' from Jon and Lu saying that they now think they can leave the Island later on the $29^{\text {th }}$ than she is suggesting, and asking her to explain her reasoning on a timeline. She could then present this graphically, perhaps using a spreadsheet.

Pupil B

Use this box for your working. The timeline can help you plan.

Use this box for your reply.
Hi Jon and Lu
We can go to the rsbund, on the 22nd dune becalue the tide goes out the earliest than the others, wisc give us more time to spendon the istand the ticle comes at 9.04 on the 22 nd Jine, suve have to wall 3 hours befor walkingso we start wanking at 12 in $\&$ a amive at the istond at 13:04. We can spend 3 howrs on the island before wavking back F ansing nome at 5:04 pm!

Comments

Pupil B uses the timeline effectively and gives clear and complete information in the 'email'. The arrival time back on the mainland is just after 5 pm , otherwise there is a complete and correct summary of information for the $22^{\text {nd }}$, including the amount of time that can be spent on the island. The logic in selecting the $22^{\text {nd }}$ is clear but incorrect - 'the tide goes out the earliest than the others which gives us more time to spend on the island - but his communication skills are good allowing his reasoning to be followed.

Probing questions and feedback

- When solving a problem, think about all the information - check you haven't missed anything important - and be careful not to make assumptions without checking them out first ...

Further work on multi-step tasks with interpretation of information would help him. The Bowland case You Reckon would give a good opportunity for him to develop these skills.

Pupil C

$$
\begin{aligned}
& \text { Use this box for your working. The timeline can help you plan. } \\
& 15^{m} \\
& 2 a n d \\
& 29^{\text {th }}
\end{aligned}
$$

Use this box for your reply.
Hi Jon and Lu
From our findings out best day to go
to the island is on 29th June. We walked
as soon as we could, to spend $6 \frac{1}{2}$ hours
but not on the footpath. Footpath is
flooded. We worked back at 4:30 pm to get
back at 5:30pm

Comments

Pupil C uses the timeline clearly and effectively with all information shown. Why she chose $12: 30$ as the start time on the $22^{\text {nd }}$ is unclear - she may think that they can only leave on the hour or half hour. The written summary supports the communication and reasoning, although as stand-alone communication, the email is less clear with the start time omitted. But the task as a whole shows high levels of reasoning, planning and communication skills.

Probing questions and feedback

- 'When summarising information, be careful not to omit anything important ... and make sure you state all your assumptions.'

The pupil may benefit from doing an extended case study that requires her to present her reasoning and solutions. Reducing Road Accidents or Product Wars would each be appropriate.

Annex: Notes for teachers

Taking account of the constraints, the following diagram may be helpful.
W denotes the best times for walking. H denotes high tide. Shading denotes no walking is possible because of high tide.

$15^{\text {th. }}$: Earliest it is possible to leave island is 5 pm , so can't be back by $5: 30 \mathrm{pm}$. [Note: could in theory leave at 9am, get to the island at 10am, leave immediately to get back by 11am.]
$22^{\text {nd }}$: Start at 12:04, arrive 13:04, leave 16:30, back 17:30
Time on island $\mathbf{3}$ hours 26 minutes
29 ${ }^{\text {th }}$: If they start at 08:57 (ie. just before 09.00), arrive 09:57 (just before 10.00), leave 16:30, back 17:30.
Time on island $\mathbf{6}$ hours 27 minutes (about $\mathbf{6} 1 / 2$ hours)

